Patterns and Trends of Antimicrobial Resistance in Staphylococcus aureus Isolated in a Private Laboratory in Paraguay from 2020 to 2024
DOI:
https://doi.org/10.52379/mcs.v9.598Keywords:
Staphylococcus aureus, Methicillin resistance, Multidrug ResistanceAbstract
Introduction: Staphylococcus aureus, a pathogen of global concern, has the ability to develop antimicrobial resistance, a factor that demands continuous surveillance. Objective: The objective was to determine the patterns and trends of antimicrobial resistance of S. aureus isolated from purulent secretions of patients attended at a private laboratory in Paraguay between 2020 and 2024. Methodology: This was a descriptive, retrospective study that used data from the electronic database of a private laboratory for the statistical analysis of variables such as antimicrobial susceptibility of S. aureus, from purulent secretion culture requests between 2020 and 2024. Results: S. aureus was isolated in 28.6% (220/770). Of these, 56.8% (n=125) were resistant to methicillin. A total of 61.5% (n=88) of the isolates were from outpatients. A moderate correlation was observed between methicillin resistance and resistance to ciprofloxacin (R²=0.709) and erythromycin (R²=0.705). The isolates showed resistance to erythromycin (66%), ciprofloxacin (34%), clindamycin (32%), and gentamicin (19%), but were 100% susceptible to trimethoprim-sulfamethoxazole and vancomycin. Among the multidrug resistance patterns in methicillin-resistant S. aureus, co-resistance to erythromycin-ciprofloxacin (37.5%) stood out. Conclusion: The increasing resistance to erythromycin, ciprofloxacin, and clindamycin limits their use in empirical treatments and highlights the importance of improving epidemiological surveillance strategies
Downloads
References
1. WHO Bacterial Priority Pathogens List 2024: Bacterial Pathogens of Public Health Importance, to Guide Research, Development, and Strategies to Prevent and Control Antimicrobial Resistance. 1st ed. Geneva: World Health Organization; 2024. https://www.who.int/publications/i/item/9789240093461
2. Arias CA, Reyes J, Carvajal LP, Rincon S, Diaz L, Panesso D, et al. A Prospective Cohort Multicenter Study of Molecular Epidemiology and Phylogenomics of Staphylococcus aureus Bacteremia in Nine Latin American Countries. Antimicrobial Agents and Chemotherapy. 2017;61(10):e00816-17. https://doi.org/10.1128/AAC.00816-17
3. Chambers HF, DeLeo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology. 2009;7(9):629–641. https://doi.org/10.1038/nrmicro2200
4. Shoaib M, Aqib AI, Muzammil I, Majeed N, Bhutta ZA, Kulyar MF e A, et al. MRSA compendium of epidemiology, transmission, pathophysiology, treatment, and prevention within one health framework. Frontiers in Microbiology. 2023;13:1067284. https://doi.org/10.3389/fmicb.2022.1067284
5. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection. 2012;18(3): 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
6. Cai Y, Philip EC, Arora S, Sim JXY, Chow W, Nazeha N, et al. The attributable mortality, length of stay, and health care costs of methicillin-resistant Staphylococcus aureus infections in Singapore. IJID Regions. 2024;12: 100427. https://doi.org/10.1016/j.ijregi.2024.100427
7. Wozniak TM, Dyda A, Merlo G, Hall L. Disease burden, associated mortality and economic impact of antimicrobial resistant infections in Australia. The Lancet Regional Health - Western Pacific. 2022;27:100521. https://doi.org/10.1016/j.lanwpc.2022.100521
8. Zhen X, Lundborg CS, Zhang M, Sun X, Li Y, Hu X, et al. Clinical and economic impact of methicillin-resistant Staphylococcus aureus: a multicentre study in China. Scientific Reports. 2020;10(1):3900. https://doi.org/10.1038/s41598-020-60825-6
9. Irala Ledezma JD. Progression of oxacillin resistance in Staphylococcus aureus isolated from 2011 - 2013 at a reference hospital in Asunción -Paraguay. Revista del Instituto de Medicina Tropical. 2017;12(1):5–9. https://doi.org/10.18004/imt/20171215-9
10. Abente S, Carpinelli L, Guillén R, Rodríguez F, Fariña N, Laspina F, et al. Frequency of methicillin-resistant Staphylococcus aureus and PVL virulence factor in ambulatory patients with skin and soft tissue infections of Asuncion, Paraguay. Memorias del Instituto de Investigaciones en Ciencias de la Salud. 2016;14(2):8–16. https://doi.org/10.18004/Mem.iics/1812-9528/2016.014(02)08-016
11. Araya S, Troche A, Benitez R, Amarilla S, Sanabria G, Ojeda L, et al. Bacteriemias por Staphylococcus aureus adquirida en la Comunidad: Comportamiento Clínico y Severidad en niños. Pediatría (Asunción). 2019;45(3):201–205. https://doi.org/10.31698/ped.45032018002
12. James S. Lewis II, PharmD, FIDSA, Amy J. Mathers, MD, D(ABMM), April M. Bobenchik, PhD, D(ABMM), Alexandra Lynn Bryson, PhD, D(ABMM), Shelley Campeau, PhD, D(ABMM), Sharon K. Cullen, BS, RAC, et al. CLSI M100 Performance Standards for Antimicrobial Susceptibility Testing. 2025. https://clsi.org/shop/standards/m100/
13. Qekwana DN, Oguttu JW, Sithole F, Odoi A. Patterns and predictors of antimicrobial resistance among Staphylococcus spp. from canine clinical cases presented at a veterinary academic hospital in South Africa. BMC Veterinary Research. 2017;13(1): 116. https://doi.org/10.1186/s12917-017-1034-3
14. Cabrera RR, Tubaro C, Dominguez R, Hinojosa M, Mosca S, De Leo G. Prevalencia de Staphylococcus aureus y su sensibilidad antibiótica en aislamientos en infecciones de piel y partes blandas en pacientes ambulatorios. Actualizaciones en Sida e Infectología. 2024; https://doi.org/10.52226/revista.v32i114.186
15. Guillén R, Carpinelli L, Rodríguez F, Castro H, Quíñónez B, Campuzano A, et al. Staphylococcus aureus adquiridos en la comunidad: caracterización clínica, fenotípica y genotípica de aislados en niños paraguayos. Revista chilena de infectología. 2016;33(6):609–618. https://doi.org/10.4067/S0716-10182016000600002
16. Suaréz-Del-Aguila UJ, Iglesias-Osores S, Moreno-Mantilla M. Susceptibilidad antibiótica de Staphylococcus aureus de aislados nasales en estudiantes del norte de Perú. Gaceta Medica Boliviana. 2020;43(1):49–55. https://doi.org/10.47993/gmb.v43i1.19
17. Castleman MJ, Pokhrel S, Triplett KD, Kusewitt DF, Elmore BO, Joyner JA, et al. Innate Sex Bias of Staphylococcus aureus Skin Infection Is Driven by α-Hemolysin. The Journal of Immunology. 2018;200(2):657–668. https://doi.org/10.4049/jimmunol.1700810
18. Samudio-Domínguez GC, Volkart-Fernández KE, Marín-Ricart MR, Gómez-Duarte GE. Infecciones causadas por Staphylococcus aureus de la Comunidad. Estudio de sensibilidad y tendencias en población pediátrica. Años 2015 a 2020. Revista del Instituto de Medicina Tropical. 2023;18(1):21–29. https://doi.org/10.18004/imt/2023.18.1.4
19. Castro-Orozco R, Consuegra-Mayor C, Mejía-Chávez G, Hernández-Escolar J, Alvis-Guzmán N. Antimicrobial resistance trends in methicillin-resistant and methicillin-susceptible Staphylococcus aureus and Staphylococcus epidermidisisolates obtained from patients admitted to intensive care units. 2010-2015. Revista de la Facultad de Medicina. 2019;67(3):221–228. https://doi.org/10.15446/revfacmed.v67n3.65741
20. Ham DC, Fike L, Wolford H, Lastinger L, Soe M, Baggs J, et al. Trimethoprim-sulfamethoxazole resistance patterns among Staphylococcus aureus in the United States, 2012–2018. Infection Control & Hospital Epidemiology. 2023;44(5): 794–797. https://doi.org/10.1017/ice.2022.9
21. Kim YK, Eom Y, Kim E, Chang E, Bae S, Jung J, et al. Molecular Characteristics and Prevalence of Rifampin Resistance in Staphylococcus aureus Isolates from Patients with Bacteremia in South Korea. Antibiotics. 2023;12(10): 1511. https://doi.org/10.3390/antibiotics12101511
22. An N, Hai L, Luong V, Vinh N, Hoa P, Hung L, et al. Antimicrobial Resistance Patterns of Staphylococcus Aureus Isolated at a General Hospital in Vietnam Between 2014 and 2021. Infection and Drug Resistance. 2024;17:259–273. https://doi.org/10.2147/IDR.S437920
23. Rodríguez Esteban M, Ode Febles J, Miranda Montero SI, Ramos López M, Farrais Villalba M, Álvarez Acosta L, et al. Evolution of antimicrobial resistance and mortality in Staphylococcus aureus endocarditis during 15 years in a university hospital. Revista Española de Quimioterapia. 2021;34(2):100–106. https://doi.org/10.37201/req/103.2020
24. Aguayo-Reyes A, Morales-León F, Quezada-Aguiluz M, Quezada M, Mella S, Riedel G, et al. Community-acquired methicillin-resistant Staphylococcus aureus invasive infections: a case series from Central-South Chile. Frontiers in Medicine. 2024;11:1365756. https://doi.org/10.3389/fmed.2024.1365756
25. Miranda-Novales MG, Flores-Moreno K, López-Vidal Y, Rodríguez-Álvarez M, Solórzano-Santos F, Soto-Hernández JL, et al. Antimicrobial resistance and antibiotic consumption in Mexican hospitals. Salud Pública de México. 2019;62(1):42. https://doi.org/10.21149/10543
26. Guillén R, Salinas C, Mendoza-Álvarez A, Rubio Rodríguez LA, Díaz-de Usera A, Lorenzo-Salazar JM, et al. Genomic epidemiology of the primary methicillin-resistant Staphylococcus aureus clones causing invasive infections in Paraguayan children. Vignoli R (ed.) Microbiology Spectrum. 2024;12(4):e03012-23. https://doi.org/10.1128/spectrum.03012-23
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Julio César Barrios Leiva, Margarita Samudio Acevedo, Rosa María Guillén Fretes, Norma Fariña, Ana Vega, Alicia Pereira Fariña, Fátima Rodríguez Acosta

This work is licensed under a Creative Commons Attribution 4.0 International License.